Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract We give a cohomological interpretation of the Heaviside filtration on the Varchenko–Gelfand ring of a pair $$({\mathcal{A}},{\mathcal{K}})$$, where $${\mathcal{A}}$$ is a real hyperplane arrangement and $${\mathcal{K}}$$ is a convex open subset of the ambient vector space. This builds on work of the first author, who studied the filtration from a purely algebraic perspective, as well as work of Moseley, who gave a cohomological interpretation in the special case where $${\mathcal{K}}$$ is the ambient vector space. We also define the Gelfand–Rybnikov ring of a conditional oriented matroid, which simultaneously generalizes the Gelfand–Rybnikov ring of an oriented matroid and the aforementioned Varchenko–Gelfand ring of a pair. We give purely combinatorial presentations of the ring, its associated graded, and its Rees algebra.more » « less
-
Ferroni and Larson gave a combinatorial interpretation of the braid Kazhdan-Lusztig polynomials in terms of series-parallel matroids. As a consequence, they confirmed an explicit formula for the leading Kazhdan-Lusztig coefficients of braid matroids with odd rank, as conjectured by Elias, Proudfoot, and Wakefield. Based on Ferroni and Larson’s work, we further explore the combinatorics behind the leading Kazhdan-Lusztig coefficients of braid matroids. The main results of this paper include an explicit formula for the leading Kazhdan-Lusztig coefficients of braid matroids with even rank, a simple expression for the number of simple series-parallel matroids of rank $k + 1$ on $2k$ elements, and explicit formulas for the leading coefficients of inverse Kazhdan-Lusztig polynomials of braid matroids. The binomial identity for the Abel polynomials plays an important role in the proofs of these formulas.more » « less
-
We define a type B analogue of the category of finite sets with surjections, and we study the representation theory of this category. We show that the opposite category is quasi-Gröbner, which implies that submodules of finitely generated modules are again finitely generated. We prove that the generating functions of finitely generated modules have certain prescribed poles, and we obtain restrictions on the representations of type B Coxeter groups that can appear in such modules. Our main example is a module that categorifies the degree i Kazhdan–Lusztig coefficients of type B Coxeter arrangements.more » « less
-
We study the category whose objects are graphs of fixed genus and whose morphisms are contractions. We show that the corresponding contravariant module categories are Noetherian and we study two families of modules over these categories. The first takes a graph to a graded piece of the homology of its unordered configuration space and the second takes a graph to an intersection homology group whose dimension is given by a Kazhdan–Lusztig coefficient; in both cases we prove that the module is finitely generated. This allows us to draw conclusions about torsion in the homology groups of graph configuration spaces, and about the growth of Betti numbers of graph configuration spaces and Kazhdan–Lusztig coefficients of graphical matroids. We also explore the relationship between our category and outer space, which is used in the study of outer automorphisms of free groups.more » « less
-
Abstract We expand upon the notion of equivariant log concavity and make equivariant log concavity conjectures for Orlik–Solomon algebras of matroids, Cordovil algebras of oriented matroids, and Orlik–Terao algebras of hyperplane arrangements. In the case of the Coxeter arrangement for the Lie algebra $$\mathfrak{s}\mathfrak{l}_n$$, we exploit the theory of representation stability to give computer-assisted proofs of these conjectures in low degree.more » « less
An official website of the United States government
